37 research outputs found

    Recommendations for the use of endoscopic lung volume reduction in South Africa: Role in the treatment of emphysema

    Get PDF
    Emphysema is a very common cause of morbidity and mortality in South Africa (SA). Therapeutic options in severe emphysema are limited. Endoscopic lung volume reduction (ELVR) is increasingly being used internationally for the treatment of advanced emphysema in a subset of patients with advanced disease, aiming to obtain the same functional advantages as surgical lung volume reduction while reducing risks and costs. In addition to endobronchial valves, ELVR using endobronchial coils is now available in SA. The high cost of these interventions underscores the need for careful patient selection to best identify those who may or may not benefit from ELVR-related procedures. The Assembly on Interventional Pulmonology of the South African Thoracic Society appointed a committee comprising both local and international experts to extensively review all relevant evidence and provide advice on the use of ELVR in SA based on published evidence, expert opinion and local access to the various devices

    Derivation of a high-resolution CT-based, semi-automated radiographic score in tuberculosis and its relationship to bacillary load and antitubercular therapy

    Get PDF
    Efforts to curb the tuberculosis (TB) pandemic remain hindered by a lack of objective measures to quantify disease severity and track treatment success that are valid in both HIV-1-infected and -uninfected TB patients. Ralph et al. [1] developed a promising radiographic scoring system, with baseline scores being predictive of sputum smear conversion at 2 months, but it is reliant on skilled readers and has not been systematically validated in predominantly HIV-infected study populations with varying CD4 counts. Superior to conventional chest radiography, high-resolution computed tomography (HRCT) is a highly sensitive tool to track endobronchial TB disease extent [2]

    Predicting COVID-19 outcomes from clinical and laboratory parameters in an intensive care facility during the second wave of the pandemic in South Africa

    Get PDF
    Background: The second wave of coronavirus disease 2019 (COVID-19) in South Africa was caused by the Beta variant of severe acute respiratory syndrome coronavirurus-2. This study aimed to explore clinical and biochemical parameters that could predict outcome in patients with COVID-19. Methods: A prospective study was conducted between 5 November 2020 and 30 April 2021 among patients with confirmed COVID-19 admitted to the intensive care unit (ICU) of a tertiary hospital. The Cox proportional hazards model in Stata 16 was used to assess risk factors associated with survival or death. Factors with P<0.05 were considered significant. Results: Patients who died were found to have significantly lower median pH (P<0.001), higher median arterial partial pressure of carbon dioxide (P<0.001), higher D-dimer levels (P=0.001), higher troponin T levels (P=0.001), higher N-terminal-prohormone B-type natriuretic peptide levels (P=0.007) and higher C-reactive protein levels (P=0.010) compared with patients who survived. Increased standard bicarbonate (HCO3std) was associated with lower risk of death (hazard ratio 0.96, 95% confidence interval 0.93–0.99). Conclusions: The mortality of patients with COVID-19 admitted to the ICU was associated with elevated D-dimer and a low HCO3std level. Large studies are warranted to increase the identification of patients at risk of poor prognosis, and to improve the clinical approach

    Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit

    Get PDF
    Objective: The aim of this study was to identify clinical and laboratory phenotype distribution patterns and their usefulness as prognostic markers in COVID-19 patients admitted to the intensive care unit (ICU) at Tygerberg Hospital, Cape Town. Methods and results: A latent class analysis (LCA) model was applied in a prospective, observational cohort study. Data from 343 COVID-19 patients were analysed. Two distinct phenotypes (1 and 2) were identified, comprising 68.46% and 31.54% of patients, respectively. The phenotype 2 patients were characterized by increased coagulopathy markers (D-dimer, median value 1.73 ng/L vs 0.94 ng/L; p < 0.001), end-organ dysfunction (creatinine, median value 79 ”mol/L vs 69.5 ”mol/L; p < 0.003), under-perfusion markers (lactate, median value 1.60 mmol/L vs 1.20 mmol/L; p < 0.001), abnormal cardiac function markers (median N‐terminal pro‐brain natriuretic peptide (NT-proBNP) 314 pg/ml vs 63.5 pg/ml; p < 0.001 and median high‐sensitivity cardiac troponin (Hs-TropT) 39 ng/L vs 12 ng/L; p < 0.001), and acute inflammatory syndrome (median neutrophil-to-lymphocyte ratio 15.08 vs 8.68; p < 0.001 and median monocyte value 0.68 × 109/L vs 0.45 × 109/L; p < 0.001). Conclusion: The identification of COVID-19 phenotypes and sub-phenotypes in ICU patients could help as a prognostic marker in the day-to-day management of COVID-19 patients admitted to the ICU

    Comparison of patients with severe COVID-19 admitted to an intensive care unit in South Africa during the first and second wave of the COVID-19 pandemic

    Get PDF
    BACKGROUND: The second wave of coronavirus disease 2019 (COVID‑19), dominated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant, has been reported to be associated with increased severity in South Africa (SA). OBJECTIVES: To describe and compare clinical characteristics, management and outcomes of COVID‑19 patients admitted to an intensive care unit (ICU) in SA during the first and second waves. METHODS: In a prospective, single-centre, descriptive study, we compared all patients with severe COVID‑19 admitted to ICU during the first and second waves. The primary outcomes assessed were ICU mortality and ICU length of stay (LOS). RESULTS: In 490 patients with comparable ages and comorbidities, no difference in mortality was demonstrated during the second compared with the first wave (65.9% v. 62.5%, p=0.57). ICU LOS was longer in the second wave (10 v. 6 days, p<0.001). More female admissions (67.1% v. 44.6%, p<0.001) and a greater proportion of patients were managed with invasive mechanical ventilation than with non-invasive respiratory support (39.0% v. 14%, p<0.001) in the second wave. CONCLUSIONS: While clinical characteristics were comparable between the two waves, a higher proportion of patients was invasively ventilated and ICU stay was longer in the second. ICU mortality was unchanged

    Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa

    Get PDF
    Few studies from Africa have described the clinical impact of co-infections on SARS-CoV-2 infection. Here, we investigate the presentation and outcome of SARS-CoV-2 infection in an African setting of high HIV-1 and tuberculosis prevalence by an observational case cohort of SARS-CoV-2 patients. A comparator group of non SARS-CoV-2 participants is included. The study includes 104 adults with SARS-CoV-2 infection of whom 29.8% are HIV-1 co-infected. Two or more co-morbidities are present in 57.7% of participants, including HIV-1 (30%) and active tuberculosis (14%). Amongst patients dually infected by tuberculosis and SARS-CoV-2, clinical features can be typical of either SARS-CoV-2 or tuberculosis: lymphopenia is exacerbated, and some markers of inflammation (D-dimer and ferritin) are further elevated (p < 0.05). Amongst HIV-1 co-infected participants those with low CD4 percentage strata exhibit reduced total, but not neutralising, anti-SARS-CoV-2 antibodies. SARS-CoV-2 specific CD8 T cell responses are present in 35.8% participants overall but undetectable in combined HIV-1 and tuberculosis. Death occurred in 30/104 (29%) of all COVID-19 patients and in 6/15 (40%) of patients with coincident SARS-CoV-2 and tuberculosis. This shows that in a high incidence setting, tuberculosis is a common co-morbidity in patients admitted to hospital with COVID-19. The immune response to SARS-CoV-2 is adversely affected by co-existent HIV-1 and tuberculosis

    Improving lung health in low-income and middle-income countries: from challenges to solutions

    Get PDF
    Low-income and middle-income countries (LMICs) bear a disproportionately high burden of the global morbidity and mortality caused by chronic respiratory diseases (CRDs), including asthma, chronic obstructive pulmonary disease, bronchiectasis, and post-tuberculosis lung disease. CRDs are strongly associated with poverty, infectious diseases, and other non-communicable diseases (NCDs), and contribute to complex multi-morbidity, with major consequences for the lives and livelihoods of those affected. The relevance of CRDs to health and socioeconomic wellbeing is expected to increase in the decades ahead, as life expectancies rise and the competing risks of early childhood mortality and infectious diseases plateau. As such, the World Health Organization has identified the prevention and control of NCDs as an urgent development issue and essential to the achievement of the Sustainable Development Goals by 2030. In this Review, we focus on CRDs in LMICs. We discuss the early life origins of CRDs; challenges in their prevention, diagnosis, and management in LMICs; and pathways to solutions to achieve true universal health coverage

    Demand-side approaches for limiting global warming to 1.5 °C

    Get PDF
    The Paris Climate Agreement defined an ambition of limiting global warming to 1.5 °C above preindustrial levels. This has triggered research on stringent emission reduction targets and corresponding mitigation pathways across energy economy and societal systems. Driven by methodological considerations, supply side and carbon dioxide removal options feature prominently in the emerging pathway literature, while much less attention has been given to the role of demand-side approaches. This special issue addresses this gap, and aims to broaden and strengthen the knowledge base in this key research and policy area. This editorial paper synthesizes the special issue’s contributions horizontally through three shared themes we identify: policy interventions, demand-side measures, and methodological approaches. The review of articles is supplemented by insights from other relevant literature. Overall, our paper underlines that stringent demand-side policy portfolios are required to drive the pace and direction of deep decarbonization pathways and keep the 1.5 °C target within reach. It confirms that insufficient attention has been paid to demand-side measures, which are found to be inextricably linked to supply-side decarbonization and able to complement supply-side measures. The paper also shows that there is an abundance of demand-side measures to limit warming to 1.5 °C, but it warns that not all of these options are “seen” or captured by current quantitative tools or progress indicators, and some remain insufficiently represented in the current policy discourse. Based on the set of papers presented in the special issue, we conclude that demand-side mitigation in line with the 1.5 °C goal is possible; however, it remains enormously challenging and dependent on both innovative technologies and policies, and behavioral change. Limiting warming to 1.5 °C requires, more than ever, a plurality of methods and integrated behavioral and technology approaches to better support policymaking and resulting policy interventions

    A position statement and practical guide to the use of particulate filtering facepiece respirators (N95, FFP2, or equivalent) for South African health workers exposed to respiratory pathogens including Mycobacterium tuberculosis and SARS-CoV-2.

    Get PDF
    SUMMARY: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is transmitted mainly by aerosol in particles <10 ”m that can remain suspended for hours before being inhaled. Because particulate filtering facepiece respirators ('respirators'; e.g. N95 masks) are more effective than surgical masks against bio-aerosols, many international organisations now recommend that health workers (HWs) wear a respirator when caring for individuals who may have COVID-19. In South Africa (SA), however, surgical masks are still recommended for the routine care of individuals with possible or confirmed COVID-19, with respirators reserved for so-called aerosol-generating procedures. In contrast, SA guidelines do recommend respirators for routine care of individuals with possible or confirmed tuberculosis (TB), which is also transmitted via aerosol. In health facilities in SA, distinguishing between TB and COVID-19 is challenging without examination and investigation, both of which may expose HWs to potentially infectious individuals. Symptom-based triage has limited utility in defining risk. Indeed, significant proportions of individuals with COVID-19 and/or pulmonary TB may not have symptoms and/or test negative. The prevalence of undiagnosed respiratory disease is therefore likely significant in many general clinical areas (e.g. waiting areas). Moreover, a proportion of HWs are HIV-positive and are at increased risk of severe COVID-19 and death. RECOMMENDATIONS: Sustained improvements in infection prevention and control (IPC) require reorganisation of systems to prioritise HW and patient safety. While this will take time, it is unacceptable to leave HWs exposed until such changes are made. We propose that the SA health system adopts a target of 'zero harm', aiming to eliminate transmission of respiratory pathogens to all individuals in every healthcare setting. Accordingly, we recommend: the use of respirators by all staff (clinical and non-clinical) during activities that involve contact or sharing air in indoor spaces with individuals who: (i) have not yet been clinically evaluated; or (ii) are thought or known to have TB and/or COVID-19 or other potentially harmful respiratory infections;the use of respirators that meet national and international manufacturing standards;evaluation of all respirators, at the least, by qualitative fit testing; andthe use of respirators as part of a 'package of care' in line with international IPC recommendations. We recognise that this will be challenging, not least due to global and national shortages of personal protective equipment (PPE). SA national policy around respiratory protective equipment enables a robust framework for manufacture and quality control and has been supported by local manufacturers and the Department of Trade, Industry and Competition. Respirator manufacturers should explore adaptations to improve comfort and reduce barriers to communication. Structural changes are needed urgently to improve the safety of health facilities: persistent advocacy and research around potential systems change remain essential
    corecore